Determining the importance of soil properties for clay dispersibility using artificial neural network and adaptive neuro-fuzzy inference system

نویسندگان

  • I. Esfandiarpour
  • M. Ranjbar Khorasani
  • H. Shirani
چکیده

The main purpose of the current research is comparing the results of Artificial Neural Network (ANN) with Adaptive Neuro-Fuzzy Inference System (ANFIS) with regard to determination of the importance of soil properties affecting clay dispersibility. After taking samples from two depths of 0-40 and 40-80 cm, the spontaneous and mechanical dispersions of clay were recorded using both weighing and turbidimetric methods. To determine the degree of importance of soil properties affecting clay dispersibility, first ANNs and ANFIS in MATLAB Software were determined, using all research variables. After determining less effective properties and omitting them, the mentioned networks with the remaining variables including percentage of clay and sand, soil reaction, Electrical Conductivity (EC) and Sodium Adsorption Ratio (SAR) were measured and the degree of importance of each variable in clay dispersibility was determined. Finally, the results of ANNs and ANFIS were compared by calculation of validation parameters. Existence of high correlation between calculated values for weighing and turbidimetric methods showed a linear relationship between the two methods. In general, in both depths and for both weighing and turbidimetric methods, the sensitivity of clay dispersibility to the percentage of the clay, sand and SAR, was higher than any other variable. Although the results obtained from the validation statistics indicate high accuracy of both ANN and ANFIS models, the last model showed relatively better results as compared to ANN model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determining the importance of soil properties for clay dispersibility using artificial neural network and daptive neuro-fuzzy inference system

The main purpose of the current research is comparing the results of Artificial Neural Network (ANN) with Adaptive Neuro-Fuzzy Inference System (ANFIS) with regard to determination of the importance of soil properties affecting clay dispersibility. After taking samples from two depths of 0-40 and 40-80 cm, the spontaneous and mechanical dispersions of clay were recorded using both weighing and ...

متن کامل

The use of wavelet - artificial neural network and adaptive neuro fuzzy inference system models to predict monthly precipitation

Precipitation forecasting due to its random nature in space and time always faced with many problems and this uncertainty reduces the validity of the forecasting model. Nowadays nonlinear networks as intelligent systems to predict such complex phenomena are widely used. One of the methods that have been considered in recent years in the fields of hydrology is use of wavelet transform as a moder...

متن کامل

A COMPREHENSIVE STUDY ON THE CONCRETE COMPRESSIVE STRENGTH ESTIMATION USING ARTIFICIAL NEURAL NETWORK AND ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM

This research deals with the development and comparison of two data-driven models, i.e., Artificial Neural Network (ANN) and Adaptive Neuro-based Fuzzy Inference System (ANFIS) models for estimation of 28-day compressive strength of concrete for 160 different mix designs. These various mix designs are constructed based on seven different parameters, i.e., 3/4 mm sand, 3/8 mm sand, cement conten...

متن کامل

Evaluation of the Efficiency of the Adaptive Neuro Fuzzy Inference System (ANFIS) in the Modeling of the Ionosphere Total Electron Content Time Series Case Study: Tehran Permanent GPS Station

Global positioning system (GPS) measurements provide accurate and continuous 3-dimensional position, velocity and time data anywhere on or above the surface of the earth, anytime, and in all weather conditions. However, the predominant ranging error source for GPS signals is an ionospheric error. The ionosphere is the region of the atmosphere from about 60 km to more than 1500 km above the eart...

متن کامل

The efficiency of Artificial Neural Network, Neuro-Fuzzy and Multivariate Regression models for runoff and erosion simulation using rainfall simulator

1- INTRODUCTION According to the complexity of environmental factors related to erosion and runoff, correct simulation of these variables find importance under rain intensity domain of watershed areas.  Although modeling of erosion and runoff by Artificial Neural Network and Neuro-Fuzzy based on rainfall-runoff and discharge-sediment models were widely applied by researchers, scrutinizing Arti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017